Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Epidemiol Prev ; 47(3): 125-136, 2023.
Article in Italian | MEDLINE | ID: covidwho-2318464

ABSTRACT

BACKGROUND: after the outbreak of the SARS-CoV-2 pandemic in 2020, several waves of pandemic cases have occurred in Italy. The role of air pollution has been hypothesized and investigated in several studies. However, to date, the role of chronic exposure to air pollutants in increasing incidence of SARS-CoV-2 infections is still debated. OBJECTIVES: to investigate the association between long-term exposure to air pollutants and the incidence of SARS-CoV-2 infections in Italy. DESIGN: a satellite-based air pollution exposure model with 1-km2 spatial resolution for entire Italy was applied and 2016-2019 mean population-weighted concentrations of particulate matter < 10 micron (PM10), PM <2.5 micron (PM2.5), and nitrogen dioxide (NO2) was calculated to each municipality as estimates of chronic exposures. A principal component analysis (PCA) approach was applied to 50+ area-level covariates (geography and topography, population density, mobility, population health, socioeconomic status) to account for the major determinants of the spatial distribution of incidence rates of SARS-CoV-2 infection. Detailed information was further used on intra- and inter-municipal mobility during the pandemic period. Finally, a mixed longitudinal ecological design with the study units consisting of individual municipalities in Italy was applied. Generalized negative binomial models controlling for age, gender, province, month, PCA variables, and population density were estimated. SETTING AND PARTICIPANTS: individual records of diagnosed SARS-2-CoV-2 infections in Italy from February 2020 to June 2021 reported to the Italian Integrated Surveillance of COVID-19 were used. MAIN OUTCOME MEASURES: percentage increases in incidence rate (%IR) and corresponding 95% confidence intervals (95% CI) per unit increase in exposure. RESULTS: 3,995,202 COVID-19 cases in 7,800 municipalities were analysed (total population: 59,589,357 inhabitants). It was found that long-term exposure to PM2.5, PM10, and NO2 was significantly associated with the incidence rates of SARS-CoV-2 infection. In particular, incidence of COVID-19 increased by 0.3% (95%CI 0.1%-0.4%), 0.3% (0.2%-0.4%), and 0.9% (0.8%-1.0%) per 1 µg/m3 increment in PM2.5, PM10 and NO2, respectively. Associations were higher among elderly subjects and during the second pandemic wave (September 2020-December 2020). Several sensitivity analyses confirmed the main results. The results for NO2 were especially robust to multiple sensitivity analyses. CONCLUSIONS: evidence of an association between long-term exposure to ambient air pollutants and the incidence of SARS-CoV-2 infections in Italy was found.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Aged , Incidence , Nitrogen Dioxide/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/analysis , COVID-19/epidemiology , SARS-CoV-2 , Italy/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis
2.
Environ Health Perspect ; 131(5): 57004, 2023 05.
Article in English | MEDLINE | ID: covidwho-2319530

ABSTRACT

BACKGROUND: The role of chronic exposure to ambient air pollutants in increasing COVID-19 fatality is still unclear. OBJECTIVES: The study aimed to investigate the association between long-term exposure to air pollutants and mortality among 4 million COVID-19 cases in Italy. METHODS: We obtained individual records of all COVID-19 cases identified in Italy from February 2020 to June 2021. We assigned 2016-2019 mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10µm (PM10), PM with aerodynamic diameter ≤2.5µm (PM2.5), and nitrogen dioxide (NO2) to each municipality (n=7,800) as estimates of chronic exposures. We applied a principal component analysis (PCA) and a generalized propensity score (GPS) approach to an extensive list of area-level covariates to account for major determinants of the spatial distribution of COVID-19 case-fatality rates. Then, we applied generalized negative binomial models matched on GPS, age, sex, province, and month. As additional analyses, we fit separate models by pandemic periods, age, and sex; we quantified the numbers of COVID-19 deaths attributable to exceedances in annual air pollutant concentrations above predefined thresholds; and we explored associations between air pollution and alternative outcomes of COVID-19 severity, namely hospitalizations or accesses to intensive care units. RESULTS: We analyzed 3,995,202 COVID-19 cases, which generated 124,346 deaths. Overall, case-fatality rates increased by 0.7% [95% confidence interval (CI): 0.5%, 0.9%], 0.3% (95% CI: 0.2%, 0.5%), and 0.6% (95% CI: 0.5%, 0.8%) per 1 µg/m3 increment in PM2.5, PM10, and NO2, respectively. Associations were higher among elderly subjects and during the first (February 2020-June 2020) and the third (December 2020-June 2021) pandemic waves. We estimated ∼8% COVID-19 deaths were attributable to pollutant levels above the World Health Organization 2021 air quality guidelines. DISCUSSION: We found suggestive evidence of an association between long-term exposure to ambient air pollutants with mortality among 4 million COVID-19 cases in Italy. https://doi.org/10.1289/EHP11882.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Aged , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Environmental Exposure/analysis
3.
Environmetrics ; 33(4): e2723, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1843899

ABSTRACT

When a new environmental policy or a specific intervention is taken in order to improve air quality, it is paramount to assess and quantify-in space and time-the effectiveness of the adopted strategy. The lockdown measures taken worldwide in 2020 to reduce the spread of the SARS-CoV-2 virus can be envisioned as a policy intervention with an indirect effect on air quality. In this paper we propose a statistical spatiotemporal model as a tool for intervention analysis, able to take into account the effect of weather and other confounding factor, as well as the spatial and temporal correlation existing in the data. In particular, we focus here on the 2019/2020 relative change in nitrogen dioxide (NO 2 ) concentrations in the north of Italy, for the period of March and April during which the lockdown measure was in force. We found that during March and April 2020 most of the studied area is characterized by negative relative changes (median values around - 25%), with the exception of the first week of March and the fourth week of April (median values around 5%). As these changes cannot be attributed to a weather effect, it is likely that they are a byproduct of the lockdown measures. There are two aspects of our research that are equally interesting. First, we provide a unique statistical perspective for calculating the relative change in the NO 2 by jointly modeling pollutant concentrations time series. Second, as an output we provide a collection of weekly continuous maps, describing the spatial pattern of the NO 2 2019/2020 relative changes.

4.
Epidemiol Prev ; 44(5-6 Suppl 2): 161-168, 2020.
Article in Italian | MEDLINE | ID: covidwho-1068136

ABSTRACT

Air pollution is one of the leading causes of death worldwide, with adverse effects related both to short-term and long-term exposure. It has also recently been linked to COVID-19 pandemic. To analyze this possible association in Italy, studies on the entire area of the peninsula are necessary, both urban and non-urban areas. Therefore, there is a need for a homogeneous and applicable exposure assessment tool throughout the country.Experiences of high spatio-temporal resolution models for Italian territory already exist for PM estimation, using space-time predictors, satellite data, air quality monitoring data.This work completes the availability of these estimations for the most recent years (2016-2019) and is also applied to nitrogen oxides and ozone. The spatial resolution is 1x1 km.The model confirms its capability of capturing most of PM variability (R2=0.78 and 0.74 for PM10 e PM2.5, respectively), and provides reliable estimates also for ozone (R2=0.76); for NO2 the model performance is lower (R2=0.57). The model estimations were used to calculate the PWE (population-weighted exposure) as the annual mean, weighted on the resident population in each individual cell, which represents the estimation of the Italian population's chronic exposure to air pollution.These estimates are ready to be used in studies on the association between chronic exposure to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on the health of the Italian population.


Subject(s)
Air Microbiology , Air Pollutants/analysis , Air Pollution/adverse effects , COVID-19/epidemiology , Environmental Exposure , Models, Theoretical , Pandemics , SARS-CoV-2/isolation & purification , Air Pollutants/adverse effects , Air Pollution/statistics & numerical data , Environmental Monitoring , Geography, Medical , Global Burden of Disease , Humans , Italy/epidemiology , Machine Learning , Particulate Matter/adverse effects , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL